Could we be on the brink of cleaner, longer-lasting batteries?

Font Size:

Mahdokht Shaibani, Monash University

Lithium-ion batteries have changed the world. Without the ability to store meaningful amounts of energy in a rechargeable, portable format we would have no smartphones or other personal electronic devices. The pioneers of the technology were awarded the 2019 Nobel Prize for chemistry.

But as society moves away from fossil fuels, we will need more radical new technologies for storing energy to support renewable electricity generation, electric vehicles and other needs.


Read more: Charged up: the history and development of batteries


One such technology could be lithium-sulphur batteries: they store considerably more energy than their lithium-ion cousins – in theory as much as six times the energy for a given weight. What’s more, they can be made from cheap materials that are readily available around the world.

Until now, lithium-sulphur batteries have been impractical. Their chemistry allows them to store so much energy that the battery physically breaks apart under the stress.

However, my colleagues and I have engineered a new design for these batteries, which allows them to be charged and discharged hundreds of times without breaking down. We hope to have a commercial product ready in the next two to four years.

What’s so good about sulphur?
Lithium-ion batteries require minerals such as rare earths, nickel and cobalt to produce their positive electrodes. Supply of these metals is limited, prices are rising, and their mining often has great social and environmental costs.

Industry insiders have even predicted serious shortages of these key materials in the near future, possibly as early as 2022.

In contrast, sulphur is relatively common and cheap. Sulphur is the 16th most abundant element on earth, and miners produce around 70 million tonnes of it each year. This makes it an ideal ingredient for batteries if we want them to be widely used.

What’s more, lithium-sulphur batteries rely on a different kind of chemical reaction, which means their ability to store energy (known as ‘specific capacity’) is much greater than that of lithium-ion batteries.

The prototype lithium-sulphur battery shows the technology works, but a commercial product is still years away. Mahdokht Shaibani, Author provided

Great capacity brings great stress
A person faced with a demanding job may feel stress if the demands exceed their ability to cope, resulting in a drop in productivity or performance. In much the same way, a battery electrode asked to store a lot of energy may be subjected to increased stress.

In a lithium-sulphur battery, energy is stored when positively charged lithium ions are absorbed by an electrode made of sulphur particles in a carbon matrix held together with a polymer binder. The high storage capacity means that the electrode swells up to almost double its size when fully charged.

The cycle of swelling and shrinking as the battery charges and discharges leads to a progressive loss of cohesion of particles and permanent distortion of the carbon matrix and the polymer binder.

The carbon matrix is a vital component of the battery that delivers electrons to the insulating sulphur, and the polymer glues the sulphur and carbon together. When they are distorted, the paths for electrons to move across the electrode (effectively the electrical wiring) are destroyed and the battery’s performance decays very quickly.

Giving particles some space to breathe

A CT scan of one of the sulphur electrodes shows the open structure that allows particles to expand as they charge. Mahdokht Shaibani, Author provided

The conventional way of producing batteries creates a continuous dense network of binder across the bulk of the electrode, which doesn’t leave much free space for movement.

The conventional method works for lithium-ion batteries, but for sulphur we have had to develop a new technique.

To make sure our batteries would be easy and cheap to manufacture, we used the same material as a binder but processed it a little differently. The result is a web-like network of binder that holds particles together but also leaves plenty of space for material to expand.

These expansion-tolerant electrodes can efficiently accommodate cycling stresses, allowing the sulphur particles to live up to their full energy storage capacity.


Read more: A guide to deconstructing the battery hype cycle


When will we see working sulphur batteries?
My colleagues Mainak Majumder and Matthew Hill have long histories of translating lab-scale discoveries to practical industry applications, and our multidisciplinary team contains expertise from materials synthesis and functionalisation, to design and prototyping, to device implementation in power grids and electric vehicles.

The other key ingredient in these batteries is, of course, lithium. Given that Australia is a leading global producer, we think it is a natural fit to make the batteries here.

We hope to have a commercial product ready in the next two to four years. We are working with industry partners to scale up the breakthrough, and looking toward developing a manufacturing line for commercial-level production.The Conversation

Mahdokht Shaibani, Research Fellow, Mechanical & Aerospace Engineering, Monash University

This article is republished from The Conversation under a Creative Commons licence. Read the original article.

If you enjoy our content, don’t keep it to yourself. Share our free eNews with your friends and encourage them to sign up.

RELATED LINKS

Five travel tech trends to watch in 2020

Technology is now an integral part of our lives. Unsurprisingly, the travel industry is adapting

If Dr Google's making you sick with worry, there's help

If Dr Google is making you sick with worry, there is help available.

Making our homes comfortable without cranking up the aircon

Have we forgotten how to stay comfortable without air-conditioners in multiple rooms?

Written by The Conversation



SPONSORED LINKS

Sign-up to the YourLifeChoices Enewsletter

continue reading

COVID-19

Another vaccine ruled out as second blood clot case emerges

Australia's Therapeutic Goods Association (TGA) has announced that a second case of blood clots is believed to be linked to...

Superannuation News

Super funds fight for changes to reforms

Your Super, Your Future legislation will be enacted within three months and leading players are weighing in on the impact...

Finance

Ambulance costs around Australia

There should be no hesitation when you have to call an ambulance in an emergency situation, but some people rushed...

News

Four tell-tale signs that you may have a blood clot

A blood clot is a clump of cells and protein in your blood. Blood clots form to slow down bleeding...

Beef

Sweet Potato and Shredded Beef Bowl

When it comes to serving a lot of people, chilli is a miracle dish. You throw all the ingredients into...

Finance News

How much you can save on electricity in your home state

As we prepare to head into the colder winter months, there is good news for those worried about heating costs...

COVID-19

What is thrombocytopenia, and why did it stop the AstraZeneca jab?

Anthony Zulli, Victoria University; Maja Husaric, Victoria University; Maximilian de Courten, Victoria University, and Vasso Apostolopoulos, Victoria University Australia's medical...

Wellbeing

Ways to manage death anxiety

Winston Churchill once said: "Any man who says he is not afraid of death is a liar." But while it's...

LOADING MORE ARTICLE...