Can scientists reverse ageing?

Chronic inflammation, which results when old age, stress or environmental toxins keep the body’s immune system in overdrive, can contribute to a variety of devastating diseases, from Alzheimer’s and Parkinson’s to diabetes and cancer.

Now, scientists at the University of California have identified a molecular ‘switch’ that controls the immune machinery responsible for chronic inflammation in the body.

The finding could lead to new ways of halting or even reversing many of these age-related conditions.

Associate Professor Danica Chen, the senior author of the study, explained that her laboratory is focused on understanding the reversibility of ageing and these finds have the team very excited.

“In the past, we showed that aged stem cells can be rejuvenated,” Assoc. Prof Chen said.

“Now, we are asking: to what extent can ageing be reversed? And we are doing that by looking at physiological conditions, like inflammation and insulin resistance, that have been associated with ageing-related degeneration and diseases.”

In the study, Assoc. Prof. Chen and her team show that a bulky collection of immune proteins called the NLRP3 inflammasome – responsible for sensing potential threats to the body and launching an inflammation response – can be essentially switched off by removing a small bit of molecular matter in a process called deacetylation.

Overactivation of the NLRP3 inflammasome has been linked to a variety of chronic conditions, including multiple sclerosis, cancer, diabetes and dementia.

Assoc. Prof Chen’s results suggest that drugs targeted toward deacetylating, or switching off, this NLRP3 inflammasome might help prevent or treat these conditions and possibly age-related degeneration in general.

“This acetylation can serve as a switch,” Assoc. Prof. Chen said. “So, when it is acetylated, this inflammasome is on. When it is deacetylated, the inflammasome is off.”

By studying mice and immune cells called macrophages, the team found that a protein called SIRT2 is responsible for deacetylating the NLRP3 inflammasome.

Mice that were bred with a genetic mutation which prevented them from producing SIRT2 showed more signs of inflammation at the ripe old age of two than their normal counterparts. These mice also exhibited higher insulin resistance, a condition associated with type 2 diabetes and metabolic syndrome.

The team also studied older mice with immune systems that had been destroyed with radiation and then reconstituted with blood stem cells which produced either the deacetylated or the acetylated version of the NLRP3 inflammasome.

Those which were given the deacetylated, or ‘off’ version of the inflammasome had improved insulin resistance after six weeks, indicating that switching off this immune machinery might actually reverse the course of metabolic disease.

“I think this finding has very important implications in treating major human chronic diseases,” Assoc. Prof. Chen said.

“It’s also a timely question to ask, because in the past year, many promising Alzheimer’s disease trials ended in failure. One possible explanation is that treatment starts too late, and it has gone to the point of no return.

“So, I think it’s more urgent than ever to understand the reversibility of ageing-related conditions and use that knowledge to aid a drug development for ageing-related diseases.”

What do you think of these results? Are you excited by the prospect of an anti-ageing treatment being developed?

If you enjoy our content, don’t keep it to yourself. Share our free eNews with your friends and encourage them to sign up.

Related articles:
A new remedy for health problems
Life expectancy app coming soon
Another disease with no simple fix

Written by Ben Hocking

Ben Hocking is a skilled writer and editor with interests and expertise in politics, government, Centrelink, finance, health, retirement income, superannuation, Wordle and sports.

Leave a Reply

Super is failing millions: KPMG

Banana and Chocolate Cake